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ABSTRACT

Deficiencies in forecast models commonly stem from inadequate representation of physical processes; yet,

improvement to any single physics component within a model may lead to degradations in other physics

components or the model as a whole. In this study, a systematic investigation of physics tendencies is dem-

onstrated to help identify and correct compensating sources ofmodel biases. Themodel improvement process

is illustrated by addressing a commonly known issue in warm-season rainfall forecasts from parameterized

convection models: the misrepresentation of the diurnal precipitation cycle over land, especially in its timing.

Recent advances in closure assumptions in mass-flux cumulus schemes have made remarkable improvements

in this respect. Here, we investigate these improvements in the representation of the diurnal precipitation

cycle for a spring period over the United States, and how changes to the cumulus scheme impact the model

climate and the behavior of other physics schemes. Themodified cumulus scheme improves both the timing of

the diurnal precipitation cycle and reduces midtropospheric temperature and moisture biases. However,

larger temperature andmoisture biases are found in the boundary layer as compared to a predecessor scheme,

along with an overamplification of the diurnal precipitation cycle, relative to observations. Guided by a

tendency analysis, we find that biases in the diurnal amplitude of the precipitation cycle in our simulations,

along with temperature and moisture biases in the boundary layer, originate from the land surface model.

1. Introduction

The aim of model development is an accurate and

realistic simulation of the true atmosphere, including its

climate. This is essential in numerical weather pre-

diction for skillful and reliable forecasts and also plays a

vital role in data assimilation as observations are

combined with short forecasts to construct improved

estimates of the state. Systematic errors in the forecast

system degrade those short forecasts and also violate

assumptions common in data assimilation systems,

thereby leading to inaccurate initial conditions. While

forecast verification methods can help identify sys-

tematic model errors, few consider all of the model

components and partitioning of the model tendencies,

an approach that can highlight interactions among

physics schemes and other potential sources of sys-

tematic model errors. Exceptions include studies that

employed an initial tendency method, pioneered by

Klinker and Sardeshmukh (1992) and applied suc-

cessfully by Rodwell and Palmer (2007), Williams and

Brooks (2008), and Cavallo et al. (2016) among others

in assessing climate model, clouds, and tropical cy-

clone forecast errors, respectively.

The initial tendencymethod utilizes the series of short

forecasts produced by a cycling data-assimilation sys-

tem. The difference between each short forecast and the

next analysis reflects both random and systematic fore-

cast errors, and averaging the differences over many

cycles isolates the systematic error. If the tendencies

from each physical process are accumulated in the

forecast model and also averaged over many cycles,

the systematic error can be decomposed across the

responsible model processes, enabling the investigator

to trace sources of systematic model error to specific

model components and to assess how changes to a

model component impact other physics components.

The initial tendency method is demonstrated in this

study by addressing a common issue in most cumulus

parameterizations in the representation of the diurnal

precipitation cycle. The diurnal cycle of precipitation

over the continental United States has been extensively

studied by many (e.g., Wallace 1975; Dai et al. 1999;

Carbone et al. 2002; Davis et al. 2003; Clark et al. 2007;

Carbone and Tuttle 2008; Zhang and Klein 2010; Surcel

et al. 2010; Dirmeyer et al. 2012; Mooney et al. 2017).Corresponding author: May Wong, mwong@ucar.edu
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These studies have consistently found that the diurnal

precipitation cycle in this region is well characterized by a

late-afternoon maximum in the Southeast (near the Gulf

Coast) andover theRockyMountains.East of theRockies

and into theGreat Plains, precipitationmaximaoccur later

at around local midnight, due to eastward propagation of

the storms that often originate near the Rockies. Other

contributing mechanisms to the diurnal precipitation pat-

tern include moisture provided by the Great Plains low-

level jet and the mountain–plain solenoid circulation due

to differential heating (Carbone and Tuttle 2008).

Several studies have highlighted the deficiency in pa-

rameterized convection models in not being able to

skillfully forecast warm-season rainfall as they lack an

accurate representation of the diurnal precipitation cy-

cle (e.g., Davis et al. 2003; Fritsch and Carbone 2004).

Convection-permitting models were found to perform

better at capturing the timing of the diurnal precipitation

cycle (e.g., Ban et al. 2015; Wong and Skamarock 2016).

The increase in model resolution has been instrumental

in improving the quantitative precipitation forecast skill

in numerical weather prediction and climate models

(Bernardet et al. 2000; Done et al. 2004; Davis et al. 2006;

Tang et al. 2013; Prein et al. 2015), although an over-

amplification of the mean diurnal cycle in these higher

resolutionmodels remains an issue (e.g., Clark et al. 2007;

Wong and Skamarock 2016; Weber and Mass 2019).

Meanwhile, global data assimilation and ensemble and/or

extended-range forecast systems (such as those for sub-

seasonal and seasonal prediction systems) will con-

tinue to at least partially rely on parameterized-convection

models (e.g., in variable-resolution models). In global cli-

mate models, because of the complexity in the coupling of

Earth system components and the computational expense

of running century-long simulations, the current state-

of-the-art model resolution remains at a parameterized-

convection scale. For example, the HighRes Model

Intercomparison Project uses a model horizontal grid

spacing of approximately 25 km (Haarsma et al. 2016).

The major shortcoming in the representation of the

diurnal precipitation cycle motivated several studies to

use it as a benchmark framework to assess the physi-

cal realism in parameterized convection models (e.g.,

Pritchard and Somerville 2009; Surcel et al. 2010).

Errors in the diurnal precipitation cycle point to model

errors in representing the interactions between the

large-scale environment and the parameterized con-

vective processes, including those related to clouds and

precipitation. Common evaluation diagnostics include

the diurnal cycle amplitude and phase (e.g., Dai et al.

1999), and rainfall intensity and frequency of occurrence

(e.g., Dai et al. 1999, 2007; Mooney et al. 2017). Tradi-

tionally, cumulus parameterization schemes are also

evaluated in terms of their heating and drying rates (e.g.,

Johnson 1984; Emanuel 1991; Grell et al. 1991; Bechtold

et al. 2014; Xie et al. 2002).

Here, we employ the initial tendency technique and

other diagnostics to analyze how a change in cumulus

scheme affects the diurnal cycle of precipitation and

model climate, as well as interactions with other physics

schemes. In particular, this cumulus scheme is based

on the Tiedtke (1989) cumulus parameterization with

several modifications, including a closure devised by

Bechtold et al. (2014) that incorporates the impact of

boundary layer forcing, and allows the gradual buildup

of convective available potential energy (CAPE) over

the early daytime hours. The concept is based on the

observation that CAPE buildup due to boundary layer

thermodynamics may not necessarily be in balance with

that from the free-tropospheric forcings (Zhang 2002),

in contrast to the quasi-equilibrium assumption that is

often made in cumulus schemes (e.g., Arakawa and

Schubert 1974). Zhang and Wang (2017) further made

the recent Bechtold et al. (2014) closure available to

the research community through the Advanced Research

Weather Research and Forecasting (WRF-ARW)Model

(Skamarock et al. 2008; Powers et al. 2017), following the

ECMWF Integrated Forecasting System Cy40r1 docu-

mentation (ECMWF 2014). Collectively, along with clo-

sures described in Bechtold et al. (2004), Bechtold et al.

(2008) and Sundqvist (1978), the cumulus parameteriza-

tion is available withinWRF-ARWas the ‘‘NewTiedtke’’

scheme; we refer readers to Zhang and Wang (2017)

and references within for a detailed description of the

implementation.

The paper is organized as follows. Section 2 describes

our model systems and methods of diagnosis, including

the use of initial tendencies and semiprognostic tests.

An assessment of the diurnal precipitation cycle in

the model systems is presented in section 3. In section 4,

improvements and degradations in the model climate

using the New Tiedtke scheme, as compared to that

of its predecessor, the ‘‘Tiedtke’’ scheme inWRF-ARW

(Tiedtke 1989; Zhang et al. 2011) are shown and we

further investigate the model bias differences using an

initial tendency analysis. Biases related to the ampli-

tudes of the diurnal precipitation cycles are investigated

in section 5. Finally, a summary is provided in section 6.

2. Methodology

a. Analysis and forecast systems

To conduct our forecast evaluation, we use a contin-

uously cycled data assimilation system based on the

Data Assimilation Research Testbed (DART), which

is a community facility for executing and developing
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ensemble data assimilation systems (Anderson et al.

2009). A partial cycling system is a data assimilation

system that periodically initializes with an external

global analysis to introduce information obtained from a

global data assimilation system. A continuously cycled

data assimilation system, on the other hand, always uses

its own analyses as initial conditions. Over an extended

period, a continuously cycled data assimilation system is

expected to evolve toward its model climate and permits

diagnosis of systematic model biases associated with the

model and physics configuration used to advance the

state between analysis cycles. Here, ‘‘model climate’’

is used to refer to time-averaged characteristics of the

model integrations. In our study, the model climate is

investigated using 6-h forecasts and by examining

characteristics of the systematic model errors, which

are evident as model biases relative to observations.

Rodwell and Palmer (2007) and Rodwell and Jung

(2008) highlighted the use of initial tendencies within

continuously cycled analysis systems to assess the un-

derlying physics in a global model, while Cavallo et al.

(2016) demonstrated the use in a regional model setting.

These studies tracked the time-averaged tendencies

over 6-h forecast integrations to help diagnose the

sources of systematic model biases. The use of native

analyses (i.e., those generated by the same model as

the forecast system) in these studies is particularly im-

portant, as external analyses may introduce additional

biases that can strongly influence short forecast in-

tegrations (Klocke and Rodwell 2014; Cavallo et al.

2016). For example, Cavallo et al. (2016) examined the

impact of initializing forecasts with nonnative analyses,

and showed that tendencies from the early forecast

hours are strongly sensitive to not only external ana-

lyses, but also analyses from the same model but with a

different physics scheme. Extending the forecast period

will help reduce the impact of using nonnative analyses,

but will also allow time for the model components to

interact with one another, complicating the tendency

analysis. Therefore, a separate cycled analysis system is

run for each model physics configuration examined in this

study. It is assumed here that a 6-h forecast integration is

sufficiently short to minimize the interactions among the

model physical processes.

The configuration of each analysis system is based on

the National Center for Atmospheric Research (NCAR)

ensemble system, as described in Schwartz et al. (2015,

2019). Initializations to each set of forecasts are provided

by DART analyses that use the same corresponding

model physics to generate the background atmospheric

states. Mesoscale analyses using these model systems

are produced every 6 h at a 15-km horizontal grid

spacing for the period from 1 May to 15 June 2017.

The same conventional observations are used in each

data assimilation system, including rawinsondes, Air-

craft CommunicationAddressing andReporting System

(ACARS), atmospheric motion vectors, global positioning

system refractivity profiles, meteorological aerodrome re-

ports (METAR), and marine surface observations.

The analyzed variables include horizontal winds, po-

tential temperature, water vapor mixing ratio, pres-

sure, and geopotential height; microphysical variables

are cycled.

Our model system is largely based on the physics suite

used by the operational High-Resolution Rapid Refresh

(HRRR) as implemented in version 3. TheHRRR is the

operational analysis-forecast system with partial hourly

cycling on a 3-km grid over the continental United

States (Benjamin et al. 2016). This version of the HRRR

is based on WRF-ARW, version 3.8.1. Since the New

Tiedtke scheme is only available starting from WRF-

ARW, version 3.9.1.1, the scheme is ported to the

HRRR code base. In this study, the same model code is

run on a single mesoscale domain at 15-km horizontal

grid spacing (Fig. 1). Due to the coarser model resolu-

tion, the model setup is more akin to the NOAA Rapid

Refresh (RAP) (Benjamin et al. 2016), except for the

choice of the cumulus scheme. Several model configu-

rations are used to examine systematic model biases in

selected physics suites (Table 1). In addition to the cu-

mulus scheme, the land surface model is also different

from the RAP system in the ‘‘Noah-MP’’ configuration,

which uses the Noah-MP land surface model (Niu et al.

2011; Yang et al. 2011), instead of the Rapid Update

Cycle land surface model (RUC-LSM; Smirnova et al.

1997, 2016). Relative to the NCAR ensemble system,

which used the Tiedtke scheme, the modified physics

components (relative to the Tiedtke configuration) in-

clude the RUC-LSM and the MYNN planetary bound-

ary layer (PBL) scheme (Nakanishi and Niino 2006,

2009; Olson et al. 2019).

Our region of interest is primarily over the Great

Plains in the continental United States; areal aver-

ages are computed over the region within 308 to 458N
and 21058 to 2828E (shaded region in Fig. 1). Some

statistics will be computed over the full period 1May–

15 June 2017, but additional focus will be placed on

the 2-week period from 1 to 15 June 2017, when there

is weak synoptic forcing for convective organization,

and convective evolution is more strongly tied to the

diurnal heating cycle.

b. Tendencies

The time integration scheme inWRF-ARW is a third-

order Runge–Kutta (RK) predictor-corrector scheme.

The dynamics tendencies for each model time step are
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computed as a sum of the final predictor of the ‘‘large

time-step dynamics’’ (i.e., over the third and final RK

step) and the accumulated tendencies over the series of

acoustic timesteps within that last RK step (Skamarock

and Klemp 2008). The tendencies from explicit hori-

zontal diffusion, PBL, radiation, and cumulus schemes

at each model time step are evaluated at the beginning

of the time step. The tendency due to themicrophysics is

computed at the end of the model time step as a satu-

ration adjustment step (Klemp et al. 2007). The land

surface model tendencies are provided as input into the

PBL scheme as a surface boundary condition; therefore,

their combined effect is reflected in the PBL tendencies.

We implemented tendency diagnostics for the atmo-

spheric state variables: dry1 potential temperature (u),

water vapor mass mixing ratio (qy), and model wind

components (u, y). The prognostic variables are cast in

their flux form, and can be written as

(r
d
f)t1Dt 5 (r

d
f)t 1DtFt*

dynamics 1DtFt
phys/diffusion , (1)

where f is a state variable; rd is the dry density; and

Fdynamics and Fphys/diffusion are the flux-form tendencies

from the dynamics, and physics and explicit horizontal

diffusion, respectively. The superscripts denote the time

level at which the terms are evaluated (as described

earlier), where Dt is the time step, t is the current time

level, and t* is the last predictor–corrector RK step.

Dividing Eq. (1) by rtd returns the expected f tenden-

cies from the physics and explicit horizontal diffusion

schemes. Further adding and subtracting ft1Dt in Eq. (1)

on the lhs and rearranging the terms, we get

ft1Dt 2ft 5ft1Dt(12 rt1Dt
d /rtd)

1Dt/rtdF
t1Dt
dynamics 1Dt/rtdF

t
phys/diffusion , (2)

where the appearance of the first term on the rhs is due

to the reformulation of the flux-form advection term to

its advective form. [Note that when no advection occurs

over a time step (i.e., rt1Dt
d /rtd 5 1), the time tendency for

f will be solely from the physics and explicit diffusion.]

Hereafter, this term will be included in the dynamics

tendency term.

The tendency diagnostics are computed inline at every

model time step as an accumulated sum. This eliminates

the need to output and postprocess tendencies at every

time step (as suggested in Cavallo et al. 2016). The

output interval for the tendency diagnostics will then

define the averaging interval for the tendencies. Hourly

accumulated tendencies are output in this study.

c. Semiprognostic tests

To examine in detail the differing responses of a

parameterization scheme to the large-scale environ-

ment, semiprognostic tests are conducted. These tests

are single time-step (Dt 5 75 s) experiments where in-

stantaneous three-dimensional gridscale variables are

provided as input to a parameterization scheme (Grell

et al. 1991; Jakob and Siebesma 2003). This allows a

FIG. 1. Model domain configuration used in the analysis and forecast systems (solid line).

Areal averages are computed over the central United States (shaded region). Filled contours

show model terrain height greater than 50m.

1 The flux-form moist potential temperature [Qm 5 Q(1 1 a0qy)
where a0 [ Ry/Rd ’ 1.61 (see Klemp et al. 2007)] is an alternative

prognostic variable, and its use will require the total tendency of

water vapor mixing ratio in the computation of the u budget.
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close examination of the parameterization scheme

behavior without any feedback from the rest of the

model. Both the New Tiedtke and Tiedtke cumulus

schemes depend on tendencies due to advection, the

PBL and/or radiation schemes. Here, hourly aver-

aged tendency output is provided as input where

needed. We have examined the semiprognostic ten-

dencies from both cumulus schemes using the actual

instantaneous tendencies and the hourly averaged

tendencies as input to the schemes. Differences be-

tween the semiprognostic cumulus tendencies and

those computed online are small with a mean abso-

lute difference of;8% over the central United States

and a vertical profile correlation coefficient of 0.99.

The purpose of the semiprognostic tests is to identify

the leading parameterized processes in a particular

physics scheme that drive the model behavior. In our

study, we will focus on the cumulus tendencies and the

impact of the trigger function and parameterized bulk

updraft and downdraft processes. In both schemes, at

most one type of convection (shallow, midlevel, and

deep) can be activated in each grid column. A cumulus

cloud depth is diagnosed as a part of the trigger function

based on a simple ‘‘first-guess’’ entraining plume (with

no downdrafts). In the Tiedtke scheme, if the cloud

pressure depth meets a threshold of 150 hPa, deep con-

vection is activated; otherwise, shallow convection is

assumed for the cloudy grid column.A similar first-guess

entraining plume model is used in the New Tiedtke

scheme, but is based on a diagnostic updraft vertical

velocity and includes simplified microphysics (Jakob

and Siebesma 2003; Bechtold et al. 2004). The cloud

depth threshold is 200hPa for deep convection to be

activated. We can therefore expect to see a correlation

between the diagnosed cloud-top heights and the type of

convection (e.g., Suhas and Zhang 2014). Decomposed

updraft and downdraft cumulus tendencies will also be

shown to highlight the processes most impacted by the

changes in closures.

One would expect the largest contribution from the

cumulus schemes (i.e., tendency) to occur at peak con-

vection, here defined as the time of diurnal maximum

in the precipitation cycle. As will be shown, the timings

of the diurnal cycle in the two schemes differ greatly.We

therefore conduct the semiprognostic tests at a time

step close to the predicted time of peak convection with

respect to each cumulus scheme. Alternatively, one can

use identical input fields generated from a model in-

tegration using one of the cumulus schemes; however,

the other scheme’s behavior can be sensitive to how the

forecast environment is modulated by the choice of the

first andmay not reflect the actual behavior of the scheme.

3. Diurnal precipitation cycle

a. Timing and rainfall amounts

The strongest diurnal precipitation signal occurs

during 1–15 June 2017 (Fig. 2). Precipitation from 48-h

forecast integrations using the New Tiedtke, Tiedtke,

and Noah-MP configurations and initialized with con-

sistent analyses during this period are shown in Fig. 3a.

Observed precipitation estimates from the Multi-Radar

Multi-Sensor precipitation analyses (Zhang et al. 2016)

show a diurnal cycle that peaks at approximately

2300 UTC. This is typical timing of the diurnal convec-

tion over central United States, and is consistent with

previous studies (e.g., Carbone et al. 2002). We note that

for this particular 2-week period, contrary to past

climatological studies, there is little sign of nocturnal

convection, which is typically observed to peak at

approximately 0800 UTC. A Hövmoller diagram of

the observed precipitation indicates that there are

TABLE 1. Model physics configurations used in the analysis and forecast systems.

Tiedtke New Tiedtke Noah-MP

Cumulus Tiedtkea New Tiedtkeb New Tiedtke

Land surface RUC-LSMc RUC-LSM Noah-MPd

Microphysics Thompsone Thompson Thompson

Planetary boundary layer (PBL) MYNNf MYNN MYNN

Surface layer MYNN MYNN MYNN

TKE cycling No No Yes

Radiation (longwave and shortwave) RRTMGg RRTMG RRTMG

a Zhang et al. (2011).
b Zhang and Wang (2017).
c Smirnova et al. (1997, 2016).
d Niu et al. (2011); Yang et al. (2011).
e Thompson et al. (2008).
f Nakanishi and Niino (2006, 2009); Olson et al. (2019).
g Iacono et al. (2008).
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few eastward propagating systems during this period

(not shown).

The New Tiedtke scheme is able to capture the timing

of the diurnal cycle well, especially the timing of peak

convection. Similar timing improvements have been

documented in Bechtold et al. (2014), who devised the

CAPE closure implemented in this scheme by Zhang

and Wang (2017). The Tiedtke scheme, on the other

hand, shows too early an onset of the peak convection,

similar to past studies that noted this common deficiency

in parameterized-convection models (e.g., Dai et al.

1999; Ban et al. 2015). Both models overpredict the

magnitude of peak precipitation amounts, which we

will return to in section 5 along with further discussions

on the Noah-MP forecasts. Examining the 0–24h and

24–48 h forecast periods, we see that the predicted pre-

cipitation amounts are very similar, indicating that little

model spinup time is needed. This is one of the advan-

tages of using consistent analyses in our forecast ini-

tializations; forecasts using nonnative analyses (e.g.,

using a model and/or model resolution different from

the forecast model) typically take longer to spin up.

Precipitation forecasts initialized every 6 h in the

analysis systems (Fig. 3b) show resemblance to those in

the 0–24- and 24–48-h forecasts. In particular, the di-

urnal cycle timing error in the Tiedtke forecasts is sim-

ilar, and improvement of the diurnal cycle timing in the

New Tiedtke forecasts relative to the Tiedtke forecasts

in the 0–24- and 24–48-h forecasts is also seen in the 6-h

forecasts. The amplitudes of the diurnal cycle in both sets

of forecasts are slightly improved but still overestimated.

The 1800 UTC initialized Tiedtke precipitation forecasts

benefited the most from the improved initial conditions;

however, they were insufficient to correct the timing error

in the Tiedtke forecasts. The similarity between the 6- and

48-h forecast diurnal cycles is critical, as this indicates that

model errors leading to timing and amplitude errors in the

48-h forecasts are likely already present in the short-term

6-h forecasts.

Interestingly, there is a spurious precipitation peak

at the first hour in the New Tiedtke 6-h forecasts, most

notably at 1900 UTC (Fig. 3b). The modified CAPE

closure in the New Tiedtke scheme is highly dependent

on the tendencies from the PBL and radiation schemes,

which require time to spin up from their own initializa-

tion procedures. For example, when total kinetic energy

(TKE) is not provided in the initial conditions, the PBL

scheme will carry out its own initialization procedure for

the field, which may lead to spinup errors in the growth

of the parameterized boundary layer height (J. B. Olson

2019, personal communication). Within a data assimi-

lation framework, one way to reduce the PBL spinup

time is to cycle the TKE. Figure 3b shows that model

spinup in the first-hour precipitation is enhanced in

a TKE-cycled system (Noah-MP) relative to the New

Tiedtke run, where TKE was not cycled. Additional

forecasts (not shown) with New Tiedtke and Noah-MP

indicate that the first-hour precipitation bias reduces

by about 40% when an input TKE field is provided

(either recycled from the previous 6-h forecast valid at

the initialization time or from a Noah-MP analysis). After

the first hour, the New Tiedtke and Noah-MP forecasts,

FIG. 2. Time series of observed precipitation rate (mm 6 h21) based on MRMS precipitation

estimates area-averaged over the central United States during 1 May–15 Jun 2017.

FIG. 3. Domain-averageddiurnal precipitation cycle from (a) 15-km

48-h forecasts, and (b) 15-kmbackground (6-h) forecasts from the data

assimilation system. ‘‘New Tiedtke’’ forecasts initialized with consis-

tent DART analyses are shown in red. Similarly, those using the

‘‘Tiedtke’’ and ‘‘Noah-MP’’ configurations are in blue and green, re-

spectively. MRMS observed precipitation estimates are in black.

Forecasts shown are initialized for the period 1–15 Jun 2017.
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regardless of any TKE input, converge before diverging

depending on the land surface model used. Future poten-

tial considerations to further enhance model spinup in-

clude cycling of the higher-order moments in the PBL

scheme (e.g., variances), more frequent calling of the ra-

diation scheme (which is currently called at a 15-min in-

terval), and/or cycling of the physics tendencies that are

input to the New Tiedtke scheme. Reducing model spinup

time will be important especially for data assimilation

systems that run on a shorter (e.g., hourly) cycling window.

Future investigations will examine the impact of using the

New Tiedtke scheme in an hourly cycling analysis system.

b. Amount, frequency, and intensity

For measuring the skill in predicted diurnal pre-

cipitation cycles, in addition to rainfall amount, past

studies have examined the frequency of occurrence of

rainfall events and rainfall intensity (Dai et al. 1999, 2007;

Evans and Westra 2012; Mooney et al. 2017). These ad-

ditional metrics help quantify the nature of the pre-

cipitation event. For example, the same precipitation

amount can be produced by light but very frequent pre-

cipitation events, or short episodes of heavy rainfall, which

will have different impact on the surface hydrology. The

occurrence of a rainfall event at a particular hour and

location (in our case, a grid cell on our verification grid) is

defined using a precipitation threshold, and the mean

rainfall intensity at that location is the rainfall rate ex-

ceeding the given threshold averaged over the number of

occurrences. The total amount of precipitation is equal to

the product of the frequency of occurrence and the rainfall

intensity. We note that, however, when we further spa-

tially average these quantities, this no longer holds ex-

actly, since generally f 3 I 6¼ f 3 I, where f and I are the

frequency of occurrence and rainfall intensity, re-

spectively, and the overbar denotes spatial averaging. The

exception is if all grid cells satisfy the imposed pre-

cipitation threshold (i.e., f is a constant and does not vary

in space), or if the rainfall intensity happens to be spatially

uniform (which is highly unlikely due to the convective

nature of the precipitation in our period).

We conservatively remap (i.e., conserving the domain-

average rainfall amount) the observed precipitation esti-

mates and each hourly precipitation forecasts onto a

regular 0.158 3 0.158 (Dx ’ 16km, Dy ’ 13km) veri-

fication grid (shaded region in Fig. 1). The rainfall

amount, frequency of occurrence and rainfall intensity

are then calculated for each grid cell and forecast hour

on the verification grid. We compute these metrics for

various precipitation thresholds as shown in Fig. 4. The

smallest measurable precipitation amount on the 0.018
MRMS grid is 0.1mmh21. The smallest precipitation

threshold of 4.44 3 1024mmh21 is chosen based on the

minimum possible nonzero observed value on the 0.158
verification grid, which is approximately 0.1mmh21 di-

vided by 225 grid cells. The other two precipitation

thresholds help highlight how the frequency of occur-

rence and rainfall intensity vary with increasing pre-

cipitation intensity, as compared to observations.

Figure 4 shows the metrics calculated for the 15-km

parameterized convection forecasts. At the two lowest

thresholds, both parameterized-convection models tend

to overestimate the frequency of occurrence, especially at

peak precipitation. On the other hand, rainfall intensity is

underestimated by both models, except that the Tiedtke

model shows an overprediction of the rainfall intensity

during peak precipitation. This is typical of most cumulus

schemes and is consistent with results from past studies

such as in Mooney et al. (2017) and Evans and Westra

(2012). The timing (vertical dot–dashed line) of the peak

observed precipitation (black dashed line) is more in

phase with the timing of the frequency of occurrence than

with the rainfall intensity variation, which was also found

in past studies (e.g., Dai et al. 1999; Mooney et al. 2017).

As we increase the precipitation threshold to 0.1mmh21

(Figs. 4d–f), we see that the frequency of occurrence for the

New Tiedtke forecasts drops dramatically relative to

that at the lowest threshold of 4.443 1024mmh21 (note

the change in y axis), indicating that much of the pre-

cipitating grid cells are dominated by very low rainfall

rates. The lack of change in the frequency 3 intensity

(i.e., approximate rainfall amount) curves also indicates

that these are grid cells with precipitation of very small

magnitudes. There is still an overprediction of the fre-

quency of occurrence especially at peak convection

in the New Tiedtke forecasts. Although the rainfall in-

tensity in the New Tiedtke forecasts is clearly under-

predicted, we see that the diurnal variation corresponds

well with that in the observations. The Tiedtke forecasts

on the other hand shows a clear timing error in the peak

intensity. For moderate to heavy rainfall events (pre-

cipitation threshold 5 2.54mmh21; Figs. 4g–i), the New

Tiedtke forecasts show improvement in both its frequency

of occurrence and rainfall intensity relative to the forecasts

at lower thresholds. TheNewTiedtke forecasts still have a

slight overprediction of the peak precipitation occur-

rence. On the other hand, the Tiedtke scheme appears to

strongly overpredict the frequency of occurrrence at peak

convection. Both schemes underestimate the frequency

and intensity during the nocturnal hours.

4. Impact on systematic biases

a. Verification against observations

To examine the impact the New Tiedtke scheme has

on systematic biases, 6-h forecasts from the analysis
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systems are verified against observations. Forecast

biases averaged over the entire period (1 May–15 June

2017) based on rawinsondes and aircraft data from

ACARS are shown in Fig. 5. The verification is done

using all available observations (including those not

assimilated to ensure a consistent set of observations

for verification across all experiments).Midtropospheric

temperatures in the New Tiedtke forecasts are consis-

tently warmer than in the Tiedtke forecasts, leading to a

statistically significant difference in the temperature bias

(Figs. 5a,b). At those levels, the New Tiedtke forecasts

also show a reducedmoisture bias as compared to that in

the Tiedtke forecasts (Fig. 5c). Both the New Tiedtke

and Tiedtke forecasts show a strong cold and moist bias

FIG. 4. (a),(d),(g) Area-averaged rainfall amount (mmh21), (b),(e),(h) frequency of occurrence (%), and (c),(f),(i) rainfall intensity

(mmh21) for the 15-km New Tiedtke forecasts (red) and Tiedtke forecasts (blue) with the following precipitation thresholds applied:

P. 4.443 1024 mmh21, P. 0.1mmh21, and P. 2.54mmh21. Observed values based onMRMS precipitation estimates are plotted in

black. Vertical gray dot–dashed line indicates approximately the timing of the observed peak total mean precipitation (black dashed line).

Averages are computed over the verification grid.
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in the boundary layer (Figs. 5a–c), with the New Tiedtke

scheme showing more negative temperature and more

positive moisture biases. It is important to note that

temperature observations from ACARS have dif-

ferent observational measurement errors from those

in rawinsondes, where the former exhibits a greater

variance with aircraft type, flight altitude, and phase

of flight (Ballish and Kumar 2008). Consistent with

their findings, the average temperature profiles from

ACARS are warmer than those from radiosondes,

leading to a more negative forecast bias than those

compared against radiosondes. There are some small

differences in the wind biases but not statistically

significantly so (Figs. 5d,e); therefore, for the remainder

of the paper, we will focus on the moisture and heat

budgets.

b. Link between model biases and tendencies

Figure 6 shows the total heating and moistening

tendencies averaged in 6-h windows (0000–0600,

0600–1200, 1200–1800, and 1800–0000 UTC) from

the New Tiedtke analysis system (Figs. 6a,c), and

their differences from those in the Tiedtke analysis

system (Figs. 6b,d). The mean tendency and differ-

ences averaged over all four windows are also shown

(in gray), and the vertical profiles are dominated

by the mean differences between 1800 and 0000

UTC. This is not surprising as that is when convection

is expected to be the most active in the diurnal

cycle over this region. We also see that the vertical

profiles of the accumulated tendency differences

during 1800–0000 UTC are very similar (of the same

order of magnitude) to those of the bias differences

in Fig. 5.

We further decompose the 1800–0000 UTC heating

and moistening tendencies by model components

(Fig. 7). In general, the signs of the individual physics

and dynamics tendencies are similar between the

New Tiedtke and Tiedtke forecasts. A notable dif-

ference is that the New Tiedtke cumulus scheme al-

lows for deeper net tropospheric heating and drying

than the Tiedtke cumulus scheme. In the upper tro-

posphere, it is also evident that the cumulus schemes

interact differently with the microphysics scheme,

which provides more net heating there in the Tiedtke

forecasts (Fig. 7c). Examining the cumulus and mi-

crophysics schemes together (magenta dashed line)

however suggests that the cumulus scheme is the

main driver of the net tendency differences. We also

see that the Tiedtke scheme is more active at verti-

cally mixing moisture within the boundary layer

(Fig. 7f). This difference in the boundary layer mixing

is partially compensated by the PBL scheme, but the

New Tiedtke forecasts are still generally more moist

near the surface and drier at the top of the boundary

layer relative to the Tiedtke forecasts (black line

in Fig. 7f).

Comparing Figs. 7c and 7f to the biases shown in

Figs. 5a–c, we see that the differences in model behavior

align with the bias differences. In particular, the stronger

midtropospheric drying and heating by the New Tiedtke

scheme led to reduced temperature and moisture

biases in the midtroposphere, and less mixing in the

boundary layer led to forecasts with colder and more

moist (worse) biases.

c. Parameterized processes controlling model climate

Each scheme’s behavior at peak convection, which

is when most of the convective heating and drying of

the atmosphere occurs, likely drives the differences

evident in the mean profiles between 1800 and

0000 UTC (Fig. 6). Instantaneous model output fields

at 2000 UTC (2300 UTC) from 6-h forecasts initialized

with consistent 1800 UTC DART analyses are pro-

vided as input to the semiprognostic tests with the

Tiedtke (New Tiedtke) schemes. These times are se-

lected based on the approximate peak convection time

by each scheme. Figure 8a shows the domain-averaged

total differences (black dotted lines) in the heating

and moistening tendencies from the semiprognostic

tests. The vertical profiles are very similar to the 6-h

average profiles presented in Figs. 7c and 7f, in-

dicating that the 1800–0000 UTC tendency differ-

ences are indeed dominated by differences at peak

convection for this period. The triggering of con-

vection and decomposed cumulus tendencies from

these semiprognostic tests are examined to identify

the leading parameterized processes that drive the

tendency differences.

1) TRIGGER FUNCTION

The trigger function in a cumulus scheme is the pro-

cedure that determines the occurrence of convection

and its type (e.g., Bechtold et al. 2004). Past studies have

shown that the trigger function in cumulus schemes can

have a strong impact on the development of convective

activities in parameterized convection models. For ex-

ample, Kain and Fritsch (1992) discussed how trigger

functions that depend on resolvable-scale tendencies

may be more susceptible to forecast errors, in situations

where the role of large-scale forcing is small in the

convective activity. Xie and Zhang (2000) demonstrated

how a reformulation of the trigger function signifi-

cantly improved model biases in their single-column

experiments. Suhas and Zhang (2014) recently evalu-

ated various commonly used trigger functions for
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deep convection over a point location based on fre-

quency of occurrence over several periods of interest.

In their study, the authors defined an observed deep

convective event as a precipitation event exceeding a

given threshold. Similar to their study, we will first

compare the difference in frequency of triggering of

deep, shallow, and midlevel convection between the two

cumulus schemes.

Figure 9 shows the percentage of grid points averaged

over the central U.S. domain (darker markers) and

the whole 15-km domain (fainter markers), where deep,

shallow, or midlevel convection is active, or convection

is inactive. Further analysis shows that cumulus heating

and moistening tendencies over grid columns with

activated midlevel convection were insignificant (not

shown), and therefore will not be further described.

Based on Fig. 9, it is evident that the New Tiedtke

scheme more frequently triggers deep convection than

the Tiedtke scheme, whereas the Tiedtke scheme pref-

erentially triggers shallow convection covering almost

50%of the central U.S. domain even at peak convection.

The variability over time of the deep convection trigger

in the New Tiedtke scheme is large over the central

United States (i.e., the scheme is fairly responsive to the

different large-scale forcing over the period). The shal-

low convection trigger on the other hand is less sensitive

and variable.

To evaluate the realism of the convective cloud

distribution determined as part of the trigger function,

we compare the estimated cloud-top pressure with

those retrieved from satellite-based observations over

the central U.S. domain. The satellite-based cloud-top

pressure is retrieved fromGOES-13 available through

the Satellite Clouds and Radiation Property Retrieval

System (NASA Langley Research Center 2017). In

that system, daytime retrievals use the iterative Visible

FIG. 5. Average 6-h forecast bias (forecast2 observation) compared against (a) radiosonde and (b) ACARS for

temperature (K), and radiosonde for (c) specific humidity, (d) u-wind component, and (e) y-wind component.

Biases are averaged over the central United States and for the entire period from 1 May to 15 Jun 2017. 98%

confidence intervals are shown for the mean bias differences.
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Infrared Shortwave-infrared Split-window Technique

(VISST; Minnis et al. 2008, 2011, 2016) to obtain best-

matched cloud properties relative to radiative models.

Cloud properties such as optical depth, cloud effective

radii, and cloud effective temperature, are retrieved

from top-of-atmosphere calibrated reflectances and

brightness temperatures, as well as ancillary information

including atmospheric variables from the MERRA

reanalyses (Rienecker et al. 2011). The cloud prod-

ucts are available half-hourly at an approximately

4 km resolution.

Figure 10 shows the frequency distribution of cloud-top

pressure averaged over the 15 days at 2000 UTC for

Tiedtke and 2300 UTC for New Tiedtke, and from

GOES-13 aggregated over the two closest retrieval

times. Bin intervals of 25 hPa are used, and the per-

centage of grid points is calculated over all grid points in

the central U.S. domain (including clear-sky areas).

Broadly speaking, low cloud-top pressures (between 100

and 400hPa) represent high cirrus clouds and deeper

convective clouds, whereas high cloud-top pressures

(.600hPa) represent shallow clouds. The bimodal na-

ture of the histograms of SatCORPS cloud-top pressure

is also found in cases examined by Jones et al. (2018). To

distinguish deeper cumulus clouds with high cloud tops

from high cirrus clouds, the frequency distribution of

cloud-top pressure for pixels with an optical depth t $ 3

is also plotted (dashed lines in Fig. 10).

We found a similar bimodal distribution of the diagnosed

cloud-top pressures from the two cumulus schemes.

The Tiedtke scheme tends to overpredict the frequency

and cloud-top pressures of the shallow clouds as

compared to the satellite-derived observations across

the corresponding range of lower cloud tops. This is

consistent with our finding that the Tiedtke scheme is

active in triggering shallow convection. Differences in

the distributions of the satellite-derived low cloud-top

pressures at the two times of day indicate that the ob-

served higher clouds are more prevalent at 2300 UTC

than at 2000 UTC, where the former is the typical peak

convection time observed over the central United

States. The Tiedtke scheme at its peak convection

underpredicts the frequency of the deep convective

clouds, even when compared to a less convective

observed period at 2000 UTC. The New Tiedtke

scheme, on average, is better able to capture the

distribution of the high cloud tops (t $ 3), al-

though with a slight overprediction. This indicates

that there is some physical evidence in the satellite-

derived observations for the more active trigger-

ing of deep convection in the New Tiedtke scheme

and relatively less frequent triggering of shallow

convection.

2) CONTRIBUTIONS TO THE LARGE-SCALE HEAT

AND MOISTURE BUDGETS

We now investigate how differences between the two

cumulus schemes lead to the total tendency differences

(Figs. 7c,f) and to the bias differences (Fig. 5). To do this,

we turn to the individual processes that contribute to the

large-scale heat and moisture budgets in each scheme.

The New Tiedtke and Tiedtke cumulus schemes both

include updraft and downdraft convective transport of

heat and moisture, local compensating vertical motion,

condensation/sublimation in updrafts, evaporation of

cloud-liquid water in downdrafts and of precipitation in

the unsaturated subcloud layer, and latent heat release

FIG. 6. Total 6-h model tendency for (a) potential temperature

and (c) water vapor mixing ratio from the New Tiedtke 15-km

background averaged over the full period 1 May to 15 Jun 2017

(dark gray), 0000–0600 (dark green), 0600–1200 (light green),

1200–1800 (red), and 1800–0000 UTC (blue). The total tendency

and differences averaged over the entire period are multiplied by a

factor of 10 for plotting purposes. Differences between the New

Tiedtke and Tiedtke model tendencies are shown for (b) potential

temperature and (d) water vapor, with the 98% confidence interval

of the mean difference shown. Differences are statistically signifi-

cant where the confidence interval does not include zero.
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from the conversion between snow and rain (i.e., the

freezing/melting of precipitation). In addition, the New

Tiedtke scheme also parameterizes the process of freez-

ing of condensates (i.e., cloud-liquid water to cloud-ice)

in updrafts.

We further stratify the differences in the semi-

prognostic cumulus tendencies by domain-averaging

them according to convection type. Figures 8b and 8c

show the domain-averaged differences over deep con-

vection and shallow convection columns, respectively.

To reduce the influence of the triggering frequency on the

tendency differences, cumulus tendencies are also aver-

aged over grid columnswith the same convection type (not

shown). These tendency differences are nearly opposites

of the domain averages (Figs. 8b,c). In particular, the

former show that deep convective transport and the as-

sociated condensational heating in New Tiedtke is weaker

than those in the Tiedtke scheme, while the shallow con-

vective mixing of moisture is stronger. This indicates that

the stronger warming in the mid- to upper levels of the

model in the New Tiedtke scheme is dominantly due to

more grid columns activated with deep convection, which

led to more parameterized condensational heating aloft.

As previously indicated, themore active triggering of deep

convection is supported by satellite-derived observations,

and has led to an overall improvement in the midtropo-

spheric temperature bias (Figs. 5a,b). The more frequent

and deeper convective updraft transport ofmoisture to the

FIG. 7. New Tiedtke and Tiedtke accumulated 6-h tendencies from 1800 to 0000 UTC and their mean differences

(98% confidence interval shown).
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mid- to upper model levels (Fig. 8b) led to a net drying

tendency near the top of the boundary layer. The net

moistening effect aloft, however, appears small due to a

compensating drying tendency by condensation.

Consistent with the total model tendency and tem-

perature biases seen earlier, the New Tiedtke scheme in

these semiprognostic tests shows greater cooling ten-

dencies near the surface, related to a more negative

cold bias than the Tiedtke scheme in the boundary

layer. This is partly due to more evaporative cooling

and downdraft convective transport (Fig. 8a). Rela-

tive to the Tiedtke scheme, the New Tiedtke scheme

generates more parameterized rainfall, which can

contribute to more surface evaporation, all else equal.

The resulting evaporative cooling can also be exac-

erbated by positive moisture biases in other model

components, which will be shown in the next section

to have a strong control on the parameterized pre-

cipitation amount and the amplitude of the diurnal

precipitation cycle.

As shown earlier, the Tiedtke scheme is very active in

triggering shallow convection. The more active shallow

mixing leads to more boundary layer vertical mixing of

the water vapor (Fig. 8c). This results in the signature we

see in the difference in moisture biases between the two

forecasts (Fig. 5c). The smaller boundary layer moist

bias in the Tiedtke scheme (as compared to the New

Tiedtke scheme) is therefore an artifact of excessive

vertical mixing of moisture away from the surface. This

overactive shallow mixing also contributes to a greater

moist bias above the boundary layer in the Tiedtke

forecasts. Conversely, the less active shallow convection

FIG. 8. (a) Domain-averaged vertical profiles of differences (New

Tiedtke 2 Tiedtke) in the cumulus heat and moisture budgets at all

convection-triggered grid points at peak convection time for each

cumulus scheme. (b) As in (a), but over only ‘‘deep convective’’ col-

umns. (c) As in (a), but over only ‘‘shallow convective’’ columns.

FIG. 9. Average percentage of grid points where trigger functions

are activated for deep convection, shallow convection, and mid-

level convection by the New Tiedtke scheme (red and light red)

and the Tiedtke scheme (blue and light blue) based on the semi-

prognostic tests. Darker colors represent percentages over central

United States; light colors represent percentages over the whole

15-km domain. Error bars denote one standard deviation. Aver-

ages are taken over the period 1–15 Jun 2017 at 2300 UTC for New

Tiedtke and 2000 UTC for Tiedtke.
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in the New Tiedtke scheme results in greater accumu-

lation of boundary layer moisture and increased positive

moisture bias in the boundary layer.

5. Overprediction of diurnal amplitude

To diagnose the potential cause of the diurnal

precipitation cycle overamplication, the water vapor

budget is examined. Figure 11 shows the domain-

integrated observed and forecast precipitation, and

volume-integrated water vapor mixing ratio tendencies

from the dynamics and physics tendencies. Volume-

integrated quantities are integrals in the horizontal and

vertical dimensions over the central United States. The

model tendencies and precipitation are from 48-h New

Tiedtke and Noah-MP forecasts initialized with con-

sistent DART analyses. Since model column physics

do not allow lateral exchange of prognostic variables

from one grid column to another, horizontal moisture

convergence/divergence over our domain of interest is

represented by the volume-integrated dynamics ten-

dency. As the PBL scheme only allows vertical mixing,

the volume-integrated PBL tendency represents

the net source of moisture parameterized by the land

surface model, which per design exhibits a strong di-

urnal cycle associated with the incident solar radiation

(Smirnova et al. 1997, 2016).

Similar to Fig. 3, the diurnal amplitude of the 6-h

precipitation is overpredicted in the New Tiedtke fore-

casts (dotted lines in Fig. 11). The cumulus scheme is the

main driver in converting the available moisture into

precipitation. Aside from adjustment of the large-scale

temperature and humidity, the cumulus scheme also

detrains cloud condensates from the convective up-

drafts to the gridscale column. These adjustments will

have an impact on the microphysical process rates,

which, as found here, have a net tendency to replenish

moisture through evaporation. Net horizontal mois-

ture convergence over the region is small relative to

the surface moisture fluxes from the land surface

model (labeled as ‘‘PBL’’).

To investigate whether the diurnal amplitude of our

precipitation forecasts is sensitive to the land surface

model, we switched to the Noah-MP land surface model

(Niu et al. 2011). The resulting land surface model

moisture tendencies (solid blue line in Fig. 11) are

drastically reduced during the daytime hours. Similar

differences in behavior in the LSM surface moisture

fluxes were also found in Duda et al. (2017), who

conducted a multiphysics ensemble experiment by

perturbing the LSM and found that the RUC-LSM

tends to generate an anomalously large surface mois-

ture flux. The reduction in the surface moisture flux

from changing the LSM to Noah-MP systematically

affects the amount of water vapor that the cumulus

scheme has available to convert to clouds and pre-

cipitation, and leads to a diurnal amplitude in better

agreement with that from MRMS. In addition to a

better amplitude of the diurnal precipitation cycle

(Figs. 3 and 11), the 6-h forecasts in the Noah-MP

analysis system also indicate an elimination of the

moist bias in the boundary layer and a reduced tem-

perature bias (albeit with an opposite sign; Fig. 12).

We note that similar sensitivity of the amplitude of

the diurnal precipitation cycle to the land surface

model is also found in downscaled 3-km convection-

permitting forecasts run with the same model systems

but without the cumulus scheme (not shown).

6. Summary

Error sources associated with inadequate represen-

tation of the physical processes are difficult to disen-

tangle. Improvement to any single physics component

may lead to degradations in other physics components

and overall deterioration in forecast skill. Traditional

forecast verification methods that examine skill scores,

FIG. 10. (top) Frequency distribution of cloud-top pres-

sures at 2000 UTC from the Tiedtke scheme (blue) and those at

1945 UTC/2015 UTC aggregated from all GOES-13 pixels (only

GOES-13 pixels with optical depth t $ 3) in the central U.S. do-

main are shown in black solid (dashed) lines. (bottom) As in top,

but those at 2245 UTC/2315 UTC from GOES-13 are aggregated

(black solid and dashed) and at 2300 UTC from the New Tiedtke

scheme (red). Solid lines with markers represent the mean fre-

quency distribution averaged over 1–15 Jun 2017; shadings de-

note one standard deviation.
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such as temperature biases, are useful in assessing

systematic model errors, but less informative in disen-

tangling their sources within a forecast model. A sys-

tematic investigation of physics tendencies within a

data assimilation system has been demonstrated here

to help identify and correct compensating model bia-

ses. Short 6-h forecast tendencies are used to guide the

investigation of systematic model behaviors in longer

range (1–2 day) forecasts. These 6-h forecasts were

generated as a part of a continuously cycled data as-

similation system. The initialization with consistent

DART analyses helps reduce the impact of external

model biases in our analysis and interpretation. More-

over, the data assimilation framework facilitates the

computation of biases compared against conventional

observations and serves as a verification platform. The

implementation of model tendencies within the data

assimilation system allowed a process-based perspective

on understanding model biases.

To illustrate the model improvement process, we eval-

uated an improved cumulus scheme (‘‘New Tiedtke’’)

over a warm-season rainfall period in the central United

States, and examined the impact on the model climate

and the interactive roles of other model components.

Although improvements were found in the midtropo-

spheric temperature and moisture biases, in the boundary

layer, the New Tiedtke forecasts showed colder and more

moist biases. Model tendencies and semiprognostic tests

were used to better understand and disentangle model

processes related to the bias changes. As expected, the

cumulus tendencies were found to be the dominant

driver of the forecast differences. The 6-h tendencies,

however, did show interactions of the cumulus scheme

with other physics schemes. For example, the cumulus

schemes interacted differently with the microphysics

scheme, where the impact was mostly found in the

upper-troposphere latent heating/cooling. Also, differ-

ences in the strength of boundary layer mixing as pa-

rameterized by the cumulus scheme were partially

compensated by interactions with the PBL scheme.

Despite these interactions, the cumulus scheme appears

to be the leading factor in the forecast bias changes.

Further investigation with the moisture tendency

budget revealed that the apparent deterioration in the

near-surface moisture bias in the New Tiedtke forecasts

was dominated by large daytime surface moisture fluxes

parameterized by the land surface model. Based on our

semiprognostic tests, the New Tiedtke scheme was

found to be more (less) active in triggering deep

(shallow) convection than the Tiedtke scheme, where

the former appears to be better supported by satellite-

retrieved cloud products. In other words, the drier (less

positive) near-surface moisture bias in the Tiedtke

forecasts was a result of the overactive boundary layer

mixing by the cumulus scheme, an error compensating

for the large surface moisture flux. Our results also

indicate that the amplitude of the diurnal precipitation

cycle was sensitive to the daytime surface moisture

fluxes. With the Noah-MP LSM, the daytime surface

moisture fluxes are reduced and the strong moist and

cold biases in the boundary layer are much improved.

The impact of the land surface model on the boundary

layer biases warrants future investigation.

The methodology of using tendencies to diagnose

sources of model error, as demonstrated here and in past

studies, is not limited to the WRF-ARW Model. In

practice, any forecast model within a stable and effective

continuously cycling data assimilation framework is a

candidate for this model improvement framework. For

example, within the community facility DART, other

model systems such as the Community Atmosphere

Model (CAM) and the Model for Prediction Across

Scales (MPAS) can also potentially be investigated.

Similarly, the approach would also be viable for the

National Oceanic and Atmospheric Administration

(NOAA)’s new operational weather forecast model

when run in data assimilation mode. Plans are un-

derway to implement tendency diagnostics in the new

NOAA forecast model to facilitate this type of process-

based model error analysis. These models also follow

the practice of using physics suites, which will especially

FIG. 11. Volume-integrated water vapor mixing ratio tendencies

from the dynamics (yellow) and physics (PBL in blue, cumulus in

purple, and microphysics in red), and domain-integrated modeled

and observed precipitation in black and gray, respectively. Dotted

lines are the New Tiedtke forecasts and solid lines are the Noah-

MP forecasts.
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benefit from frameworks such as this that focuses on a

holistic approach tomodel improvement.Model biases are

clearly sensitive to model resolution; therefore, individual

cycling systems are needed for different model-resolution

systems. Future diagnosis of systematic model biases in

other model systems and forecasts will be carried out.
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